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ABSTRACT 

Understanding the temporal patterns of fire occurrence and their relationships with fuel 

dryness is key for a sound fire management, especially under increasing global warming. At 

present, no system for prediction of fire occurrence risk is available in Mexico based on fuel 

dryness conditions. As part of an ongoing national scale project, we developed an operational fire 

risk and danger mapping tool based on satellite and weather information. We demonstrate how 

differing monthly temporal trends in a fuel greenness index, dead ratio (DR) and fire density 

(FDI) can be clearly differentiated by vegetation type and region for the whole country, using 

MODIS satellite observations for the period 2003-2014. We tested linear and non-linear models, 

including temporal autocorrelation terms, for prediction of FDI from DR for a total of 28 

combinations of vegetation types and regions. In addition, we developed seasonal autoregressive 

integrated moving average (ARIMA) models for forecasting of DR values based on the last 

observed values. Most ARIMA models showed values of the adjusted coefficient of 

determination (R2 adj) above 0.7-0.8, suggesting potential to forecast fuel dryness and fire risk 

and danger conditions. The best fitted models explained more than 70% of the observed FDI 

variation in the relation between monthly DR and fire density. These results suggest the potential 

of this index to be incorporated in future fire risk operational tools. However, some vegetation 

types and regions show lower correlations between DR and observed fire density, suggesting that 

other variables, such as distance and timing of agricultural burn, deserve attention in future 

studies. 

 

RESUMEN 
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Una adecuada planificación del manejo del fuego requiere de la comprensión de los patrones 

temporales de humedad del combustible y su influencia en el riesgo de incendio, particularmente 

bajo un escenario de calentamiento global. En la actualidad en México no existe ningún sistema 

operacional para la predicción del riesgo de incendio en base al grado de estrés hídrico de los 

combustibles. Un proyecto de investigación nacional actualmente en funcionamiento, tiene como 

objetivo el desarrollo de un sistema operacional de riesgo y peligro de incendio en base a 

información meteorológica y de satélite para México. Este estudio pertenece al citado proyecto, y 

muestra cómo se pueden distinguir en el país distintas tendencias temporales en un índice de 

estrés hídrico de los combustibles basado en imágenes MODIS, el índice DR, y en las tendencias 

temporales de densidad de incendios, en distintos tipos de vegetación y regiones del país. Se 

evaluaron varios modelos lineales y potenciales, incluyendo términos para la consideración de la 

autocorrelación temporal, para la predicción de la densidad de incendios a partir del índice DR 

para un total de 28 tipos de vegetación y regiones. Se desarrollaron además modelos estacionales 

autorregresivos de media móvil (ARIMA) para el pronóstico del índice DR a partir de los últimos 

valores observados. La mayoría de los modelos ARIMA desarrollados mostraron valores del 

coeficiente de determinación ajustado (R2 adj.) por encima de 0.7-0.8, sugiriendo potencial para 

ser empleados para un pronóstico del estrés hídrico de los combustibles y las condiciones de 

riesgo y peligro de incendio. Con respecto a los modelos que relacionan los valores mensuales de 

DR con FDI, la mayoría de ellos explicaron más del 70% de la variabilidad observada en FDI, 

sugiriendo potencial de este índice para ser incluido en futuras herramientas operacionales de 

riesgo de incendio. En algunos tipos de vegetación y regiones se obtuvieron correlaciones más 

reducidas entre el índice DR y los valores observados de densidad de incendios, sugiriendo que el 

papel de otras variables tales como la distancia y el patrón temporal de quemas agrícolas debería 

ser explorado en futuros estudios.  
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INTRODUCTION 

Understanding of temporal patterns of fire occurrence and their relationships with fuel 

dryness is key for sound fire management, especially under increased global warming, which 

may result in increasing drought conditions and potentially increasing fire severity and frequency 

in some regions (e.g. Wotton et al. 2003; Gillet et al. 2004; Flanningan et al. 2006, 2009; 

Woolford et al. 2013). 

Satellite sensors have been utilized in the last years to monitor fuel greenness and associated 

fire risk and danger (Lozano et al. 2007, 2008; Chuvieco et al. 2004, 2010; López et al. 2012; 

Yebra et al. 2008, 2013). Some systems such as the Fire Potential Index (FPI) (Burgan et al. 

1998) have integrated satellite information by means of fuel greenness indices based on relative 

values of the Normalized Difference Vegetation Index (NDVI) for each vegetation type (Burgan 

and Hartford 1993; Burgan et al. 1996, 1997, 1998), combined with daily 10 h fuel moisture 

content calculated from observations of weather stations (Fosberg and Deeming 1971) to map 

fuel greenness and associated fire risk and danger. Such fire danger systems offer useful 

information for a sound decision-making in strategic fire management planning (e.g. Preisler et 

al. 2011, Mavsar et al. 2013, Rodríguez y Silva et al. 2014). These operational fire danger 

systems have largely been utilized in the United States of America (USA) (Burgan et al. 1998; 

Preisler and Westerling 2007; Preisler et al. 2009, 2015) or in the European continent (Sebastian-

Lopez et al. 2002) including Spain (Huesca et al. 2007, 2009, 2014).  

In Mexico, Sepúlveda et al. (1999, 2001) tested the FPI system (Burgan et al. 1998) in the 

Baja California region, and Manzo-Delgado et al. (2004, 2009) demonstrated the potential of the 

temporal evolution of NDVI-based indices as indicators of fuel drought and associated fire risk in 

central Mexico.  
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In addition to these pioneering studies, previous work on fire risk in Mexico has focused 

on the influence of climate and fuels at regional and local scales. Several studies analyzed 

climatic effects on fire regimes (e.g. Heyerdahl and Alvarado 2003; Fulè et al. 2005, Drury and 

Veblen 2008, Skinner et al. 2008, Návar-Cháidez and Lizárraga-Mendiola 2013). Others 

evaluated the role of weather variables such as precipitation or temperature (e.g. Carrillo García 

et al. 2012; Avila-Flores et al. 2010a, 2010b; Antonio and Ellis 2015), or weather-based fire 

danger indices (e.g. Villers et al., 2012) on fire occurrence risk, mainly at local or regional scales. 

Some local or regional studies also considered the influence of fuels on fire occurrence risk (e.g. 

Flores Garnica et al. 1990, Muñoz Robles et al. 2005, Wong González and Villers Ruiz 2007, 

Castañeda Rojas et al. 2015). Whereas previous research offers useful information specific to the 

scale of their regions of study, there is a need for studies analyzing fire risk and its relationships 

with fuel dryness spatial and temporal patterns at a national scale, that cover the ample diversity 

of climatic and environmental conditions of Mexico (González- Cabán and Sandberg 1989, 

Cerano Paredes et al. 2010). Specifically, no operational fire danger system is currently available 

in Mexico. This in contrast with countries such as USA, Canada or Brazil that have developed 

operational fire risk systems based on temporal and spatial quantification of fuel greenness and 

associated fire risk and danger (e.g. Deeming et al. 1977; Van Wagner 1987; Burgan et al. 1997, 

1998; Preisler et al. 2004, 2008, 2011; 2013; Setzer and Sismanoglu 2012; Riley et al. 2013). 

This lack of an operational fire danger system led the Forest National Commission (CONAFOR 

in Spanish) and the National Research Agency (CONACYT in Spanish) to fund the national scale 

project “Development of a Fire Danger System for Mexico”. The main objective of the study is 

the development of an operational fire risk and danger mapping system based on satellite and 

weather information for Mexico (Vega-Nieva et al. 2015).  
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Within the frame of the research project, the present study focuses on understanding temporal 

patterns of fire density by vegetation type and region in Mexico and exploring its relationships 

with a MODIS-based fuel greenness index. The specific objectives of the study are:  

1) To quantify the monthly temporal trends of a MODIS satellite based fuel 

greenness index, DR, and the temporal trends of fire density (FD) by vegetation type and 

region in Mexico. 

2) To test regression models, including temporal autocorrelation of residues, for 

prediction of monthly FD by vegetation type and region from monthly DR values in 

Mexico. 

3) To develop autoregressive integrated moving average (ARIMA) models that can 

be utilized for forecasting DR based on the last observed values of this index.   

 

METHODS 

Study Area 

Because of the national scope of the work, the area of study was the Mexican Republic. 

Figure 1 shows the vegetation types present in the country according to the National Institute of 

Geography and Statistics (INEGI in Spanish) most recent land use map (INEGI Land Use Map 

Series V, 1:25000 http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/).  

We reclassified vegetation types into the following 7 categories: Agriculture (AG); Arboreous 

Secondary Vegetation (ARBSV); Deciduous Tropical Forest (DTROPF); Pastureland (PAS); 

Perennial Tropical Forest (PTROPF); Shrubby Secondary Vegetation (SHSV) and Temperate 

Forest (TFOR).  

Given the well-documented variations in fire regimes seasonality in the country (e.g. 

Rodriguez-Trejo et al. 2008; Yocom et al. 2010, 2012, 2014; Jardel et al. 2014), four 

http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/
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geographical regions, Northwest (NW), Northeast (NE), Center (C), and South (S), were 

established (figure 1). The regions definition was based on the potential fire regimes zoning for 

Mexico (Jardel et al. 2014), as well as vegetation types and climatic zones (Holridge 1996), 

together with a visual observation of the temporal and spatial patterns of clustering in fire 

hotspots for the period of study. The seven vegetation types defined above were present in all 4 

regions, resulting in a total of 28 combinations of vegetation types and region to be modeled.  

 

MODIS monthly fire hotspots and NDVI data 

Considering the availability of MODIS fire hot spots information for Mexico we selected the 

period of 2003-2014 for our study. We compiled monthly MODIS fire hotspots for the 12 years 

of the study period from CONABIO (http://incendios1.conabio.gob.mx/ ). Data were filtered to 

avoid false detections from constant heat sources such as factories. The monthly NDVI 

composite images with a spatial resolution of 1 x 1 km (MODIS product MOD13A3) from the 

study period were downloaded from http://modis.gsfc.nasa.gov/data/dataprod/mod13.php. 

 

Dead Ratio calculation  

Following Burgan et al. (1998), the following Dead Ratio index was calculated: 

DR= 100 – LR  (1) 

Where: DR= Dead Ratio, LR= Live ratio 

Dead ratio is an empirical index representing the fraction of fuel that is not alive, reaching 

100 in a fuel that is completely cured with no live biomass, and with lower values representing 

fuels with a higher fraction of live biomass. Its calculation is based on relative greenness values 

and maximum live ratios following Burgan et al. (1998) equations 2 to 4: 

http://incendios1.conabio.gob.mx/
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3
http://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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LR = RG * LRmax /100  (2) 

Where: RG is Relative Greenness, and calculated as: 

RG = (NDVI0-NDVImin)/(NDVImax-NDVImin)*100 (3) 

Where: NDVI0 the observed NDVI for each pixel at every month, NDVImin and NDVImax are 

the minimum and maximum NDVI values for each pixel. LRmax is the maximum Live Ratio and 

calculated as: 

LRmax=35+40*(NDVImax-125)/(255-125) (4) 

The values 125 and 255 are the absolute minimum and maximum NDVI values observed for 

Mexico. Maximum and minimum NDVI values for each pixel and absolute minimum and 

maximum NDVI values were calculated considering all the NDVI monthly images for the period 

2003-2014. Dead Ratio (DR) values were calculated for each monthly NDVI image in the period 

of study and mean DR value for each monthly image was calculated using Cell Statistics in 

ArcGIS 10.3 (ESRI 2011). 

 

Fire Density Index  

For each of the 28 vegetation types and regions considered, monthly Fire Density (FD) was 

calculated by dividing the number of fires in the area by the surface (km2) of the 

vegetation/region considered. Monthly FD values for each vegetation type and region were scaled 

to a Fire Density Index (FDI) as follows:  

FDI= Number of fires / Surface (km2) x 5000 (5) 

The FDI index is defined so that a FD of 0.01 fires/km2 – e.g. 1 fire/100 km2 – is equivalent to 

an FDI value of 50. Accordingly, a FD of 2 fires/100 km2 is equivalent to an FDI value of 100, 

which might be considered an indicator of a high fire density. 
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Modeling monthly FDI from DR 

Except for agriculture, fire season concentrated on the period December-June for all 

vegetation types considered. Agriculture showed an earlier start of fire season, caused by 

agricultural burnings which usually take place very early on the dry season (Martínez-Torres et 

al. 2016). Consequently, all land uses, except for agriculture, were modeled for the period 

December-June and agriculture was modeled for the whole year.  

Model formulation and selection. 

We fitted linear and non-linear (power) models for prediction of FDI from DR for each 

vegetation type and region, following: 

FDI= ai + bi*DR           (6) 

FDI= a0*DRb0          (7) 

Where:  

ai, bi, a0, b0, are model coefficients, FDI: Fire Density Index (eq. 5), DR: Dry Ratio (eq. 1). 

To further assess whether the models are different among different months or groups of months, 

the nonlinear extra sum of squares method was used (Bates and Watts, 1988, pp. 103-104). This 

method requires the fitting of full and reduced models and has frequently been applied to assess 

whether separate models are necessary for different species or different geographic regions (e.g., 

Huang et al., 2000; Zhang et al., 2002; Corral et al., 2004; Castedo et al., 2005; Corral et al., 

2007). In this paper the reduced model corresponds to the same set of global parameters for all 

months, as shown in eqs 6 and 7. The full models correspond to different sets of global 

parameters for different months or group of months which are obtained by expanding each global 

parameter by including an associated parameter and a dummy variable to differentiate the months 

or groups of months.  
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 For example, the expansion of a global parameter ib  of a linear model (eq.6 for the reduced 

model) can be written as: 

bi1+bi2d2+…+bi12d12 (8) 

where 1ib – 5ib  are the associated parameters of the full model, and d2–d12 are the dummy 

categorical variables for considering the months, which are defined as follows: d2 = 1 if 

month = February, otherwise d2 = 0; …; d2 = 12 if month = December, otherwise d12 = 0; 

The appropriate test statistic uses the following expression: 

F

F

FR

FR

df
SSE

dfdf
SSESSE

F ÷
−
−

=
 

(9) 

where RSSE  is the error sum of squares of the reduced model, FSSE  is the error sum of squares 

of the full model, and Rdf  and Fdf  are the degrees of freedom of the full and reduced models, 

respectively. The non-linear extra sum of squares follows an F-distribution. 

If the above F-test results reveal that there is no difference among the models for different 

months, a composite model fitted on the combined data is all that is needed. If the F-test results 

show that there are differences among models (P<0.05) further tests are needed to evaluate 

whether the differences are caused by as few as two or as many as all of the months. For instance, 

full models for all combinations of grouped months (1 to 11 grouped months for agriculture and 1 

to 6 grouped months for the remaining vegetation types) were compared with their corresponding 

reduced model using the F-test. Only when an insignificant F-value (P>0.05) was obtained, the 

models for these two group of months could be considered similar and combined. 

We selected candidate models where the grouped coefficients were significantly different as 

detected by the F-test. These candidate models were further evaluated by the following goodness 
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of fit statistic statistics: adjusted coefficient of determination (R2), root mean squared error 

(RMSE) and the Standard AIC, calculated as follows:  

∑
∑
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adj  

(10) 
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lnlnAIC ·2σ̂ln··2σ̂ln· 22 +−+=  (12) 

Where: iy and iŷ  are the observed and estimated values of the dependent variable, respectively, 

y is the average value of the dependent variable, n is the total number of observations used to fit 

the model, p is the number of model parameters, l = p+1, and 2σ̂  is the estimator of the error 

variance of the model the value of which is obtained as follows: 

( )∑
=

−=
n

i
ii nyy

1

22 /ˆσ̂  
(13

) 

Autocorrelation 

Because the structure of the data includes consecutive observations of FDI, autocorrelation 

within the residuals of each vegetation type/region might be expected, which would violate the 

assumption of independent error terms. In order to account for this temporal autocorrelation the 

adjustment was performed in two stages. First we adjusted models without accounting for the 

correlation between consecutive observations. We then examined presence of autocorrelation 

based on the visual inspection of plots of residuals against residuals from previous observations 

for each combination of vegetation type and region. Based on the observed autocorrelation at 

time lags of order k, we included a modified k-order autoregressive error structure which 
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accounted for the time lag between consecutive observations in the models for each combination 

of vegetation type and region. Error terms were consequently expanded as follows: 

∑
=

−
− += −

x

k
iki

hh
kki eIe kii

1

ερ  

(14) 

where Ik = 1 for i > k and it is zero for i = k, kρ  is the k-order continuous autoregressive 

parameter to be estimated, and hi-hi-k is the time lag length (months) separating the ith from the 

ith-k observations, hi > hi-k, ei is the ith ordinary residual (i.e., the difference between the 

observed and the estimated FDI at month i) for each combination of vegetation type and region.  

The order k of the modified error structure was selected based on the plots of residuals against 

lag residuals. Models were fitted by use of the Model Procedure of SAS/ETS® (SAS Institute Inc. 

2009). 

Autoregressive integrated moving average (ARIMA) modeling of DR 

We tested the fitting of seasonal AutoRegressive (AR) Integrated (I) Moving Average (MA) 

models (ARIMA) for forecasting the DR time series of each vegetation type and region. Seasonal 

ARIMAS are commonly utilized in the remote sensing domain due to the highly significant 

seasonal component usually associated with remote sensing time series (e.g. Fernández-Manso et 

al. 2011, Huesca et al. 2014).  

The seasonal ARIMA model incorporates both non-seasonal and seasonal factors in a 

multiplicative model. One shorthand notation for the model is: 

ARIMA (ar, dif, ma) × (sar, sdif, sma)S,  (15) 

with ar = non-seasonal AR lag order; dif = non-seasonal differencing; ma = non-seasonal MA 

lag order; sar = seasonal AR lag order; sdif = seasonal differencing; sma = seasonal MA lag order 

and S = time span of repeating seasonal pattern. 
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Seasonal ARIMA models were fitted using the "auto.arima" command within the library 

"forecasting" in R (Hyndman 2016, R Core Team 2016). The Standard AIC selection criterium 

(Hamilton 1994) was applied to select the most suitable model. The individual and joint 

significance of the model parameters was assessed by means of the Student-t and F tests. 

We examined autocorrelation by plotting regular and partial autocorrelation functions (ACF 

and PACF) for both the variable DR to be adjusted and the residuals obtained by the ARIMA 

models. PACF and ACF plots of both DR and model residuals were obtained using the library 

"forecasting" in R (Hyndman 2016, R Core Team 2016). We selected models of the lowest AIC 

where no autocorrelation in the residuals was present as observed in Partial Autocorrelation 

Function (PACF) and Autocorrelation Function (ACF) plots.  

 

RESULTS 

 

Observed temporal trends of monthly DR and FDI 

Figure 2 (captures at high resolution included as annexes) shows the observed temporal 

trends of the monthly mean DR values (upper lines, right axis) together with monthly FDI values 

(lower line, left axis) observed for each one of the 28 combinations of vegetation types and 

regions for the period of 12 years that was considered in the study. 

 

Observed DR temporal trends by vegetation types and regions 

For vegetation types, the highest DR values were observed in agricultural and pasture, and the 

lower DR values were found for all tropical forests, whereas temperate forests showed 

intermediate DR values. For most vegetation types, a regional gradient was observed with the 

highest DR values found in the NW region and lowest values in the S, with C and NE regions 
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showing intermediate values. During the first months of the year all vegetation types and regions 

showed increasing DR values. The patterns of DR increase in these earlier months varied largely 

between vegetation types and regions. In general, the increase of DR occurred earlier for NW 

region compared to Central (C) and S regions. The rates of DR decrease, likely caused by the 

occurrence of precipitation, also varied largely by vegetation type and region. The decrease of the 

DR occurred earliest at the center and south regions for most of the vegetation types, often 

peaking at the months of April-May, and decreasing in the following months. In the NW region, 

the decrease of DR tended to occur later than the other regions, with NE showing intermediate 

values.  

 

Observed FDI trends by vegetation types and regions 

FDI values varied largely between vegetation types and regions. The highest FDI values were 

observed for agriculture, pasture and shrubby secondary vegetation in the S region, with values 

>500 (equivalent to a fire density of >10 fire hotspots/100 km2).  

The central region also showed high FDI values for most of the vegetation types, with 

maximum FDI values > 250 (> 5 fire hotspots /100 km2) for most land uses. 

In the NW, the highest FDI values were found for temperate forest, with FDI values >300 

(equivalent to >6 fires/ km2) In the NE region, observed FDI on temperate forest was lower than 

in the NW, with observed FDI values < 50 (< 1 fire hotspot/100 km2) for most of the years.  

Arboreous and shrubby secondary vegetation showed high FDI values for all of the regions, 

with C and S region reaching values above 100 in all years, and with values above 50 for NW 

and NE regions.  

Regarding tropical forests, high FDI values > 100 and even > 200 were found in the driest 

years for deciduous tropical forests (DTROPF) in the four regions. Observed FDI values were 
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generally two or three times higher than corresponding values for perennial tropical forests 

(PTROPF) in the NW, NE and S regions (figure 2). In the central region, in spite of lower DR 

conditions in PTROPF compared to DTROPF as expected in a wetter ecosystem, observed FDI 

values were high at both ecosystem types. 

 

Models relating monthly FDI with DR by vegetation type and region  

Both linear and power reduced models –those with common parameters for all months- (i.e. 

equations 7 and 8) resulted in R2 values lower than 0.5 for all land uses, with the exception of 

pasture (PAS) from the NO region and deciduous tropical forests DTROPF of the S region, that 

could be modeled with a reduced non-linear model with all months grouped (eq. 7, table 2). For 

the remaining vegetation types, the F statistic calculated with full models was 10.4, and the 

probability of finding a critical value greater than 10.4 (i.e., Fcritical (1-α; dfR-dfF)>10.4) was 

lower than 0.01. There were therefore differences among the models from different months or 

groups of months.  

Based on the F-tests and the evaluation of their goodness of fit statistics, we selected the 

models shown in table 1 as the best candidate models for each vegetation type and region. Fitted 

model coefficients for the selected best models are shown in Table 2. Nonlinear (power) models 

described the data better than linear models for all vegetation types and regions. Eqs. 7 and 16-

24, with grouped coefficients for the earlier months (December to February, Mach or April) best 

fitted the data for non-agricultural vegetation types. Most models show separated coefficients for 

the peak months April or May, varying by vegetation type and region. In the case of agriculture 

(which was modeled for the 12 months), months of September to March or April could be 

grouped, suggesting a constant relationships of DR to FDI at the start of the fire season, with 
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latter months (May, June and in some regions also April) having higher fire occurrence as noted 

by higher coefficient values for those latter months (eq. 25-27, table 2).  

Predicted and observed FDI values for each vegetation type and region are shown in Figure 

3. Goodness of fit statistics for the best fit models are shown in table 2. The selected equations 

showed good fits for several vegetation types and regions, with 13 of 28 models showing 

adjusted R2 values higher than 0.8; 11 models in the range 0.7-0.8, and 4 models (those for 

temperate and tropical forests of the NE region and pasture of the NO) with adjusted R2 values 

ranging from 0.65 to 0.7. 

Autocorrelation in FDI models  

A visual examination of the residuals at time i against the corresponding residuals at precedent 

months i-k, showed that residuals were correlated at time lag k=1 (i.e. with the previous month). 

No correlation was observed for the residuals for time lags k greater than 1 month for any 

vegetation type. Table 2 shows the rho parameter included in the models to account for temporal 

autocorrelation of the residuals.  

 

Autoregressive integrated moving average (ARIMA) modeling of DR. 

The best fit ARIMA models and goodness of fit coefficients are shown in Table 3. The best 

fit seasonal ARIMA models showed good adjusted R2 values, with 14 models with R2 values 

higher than 0.8; 9 models with adjusted R2 values of 0-7-0.8, and 5 models (SHSV_S, PAS_S, 

ARBSV_S, PAS_NE, PTROPF_NE and PTROPF_S) with adjusted R2 values of 0.6-0.7. RMSE 

values ranged from < 15 for 13 models, <25 for a total of 24 models, with the remaining 4 

models ranging between 25-35 (DTROPF_NE, AG_S, PAS_S, DTROPF_NW).   

The order of the non-seasonal autoregressive coefficients (ar) ranged from 1 to 6 months, 

often corresponding to the correlation lags suggested by the Partial Autocorrelation Function 
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(PACF) and Autocorrelation Function (ACF) plots of DR. No integrated coefficients (dif and 

sdif) were obtained for any model, as expected due to the absence of differencing in the variable 

to be modeled. Some of the best fit models included moving average (ma) coefficients of order 1-

2, and seasonal autorregresive (sar) and moving average (sma) coefficients of order 1-2 and 1-3, 

respectively. For all the models, we plotted ACF and PACF of the variable DR to be adjusted, 

and also of the residuals after adjustment, to inspect the presence of partial or absolute correlation 

at any time lag after adjustment. Figure 4 shows an example of ACF and PACF plots of DR and 

of the best fit ARMA model residual. ACF and PACF plots for all vegetation types are included 

as annexes. For all vegetation types, correlations at time lags ranging from 1 to 6 months were 

visible in the PACF and ACF plots of the DR variable to be modeled. This correlation was 

removed in the residuals of the best fit models, with PACF and ACF values below the level for 

significant correlation at all time lags (Fig 4 and annexes). 

 

Mapping predicted fire occurrence risk 

We produced maps of predicted FDI from DR based on the best fit models for each 

vegetation type. Figure 5 (captures at high resolution included as annexes) shows an example of 

predicted FDI maps for the fire season months of March to June for two contrasting years: 2010, 

a more moderate fire year, and 2011, an extremely dry year with a large fire occurrence. It can be 

seen that the different fuel drought conditions result in very contrasting FDI predictions between 

the two years. In the year 2011, predicted FDI was high to extreme for the months of April and 

May for the NW and NE regions, corresponding with a very high hotspot density observed on 

those two regions and contrasting with lower predicted FDI and observed hotspot density for the 

same months in the year 2010. Fire risk in the central region was also higher in 2011, with higher 

predicted and observed fire density in the months of March to May. In the South region, fuel 
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drought and associated FDI were also higher in the year 2011, particularly in the months of May 

and June, corresponding with a higher observed hotspot density. 

 

DISCUSSION 

 

Observed DR temporal trends by vegetation types and regions 

The DR trend with vegetation types suggest sensitivity of this index to the different moisture 

conditions at different ecosystem types, with the highest values observed for pasture and 

agriculture while the lowest DR values measured in more humid ecosystems such as perennial 

tropical forests. The relative greenness component of the index is designed to normalize the index 

value between land types. However, by multiplying relative greenness by a maximum live ratio 

which depends on the maximum NDVI (Burgan et al. 1998), the DR index takes into account the 

variability due to type of vegetation. Different types of vegetation have different seasonal trends 

of drying and wetting, which is reflected into their NDVI temporal trends (e.g. Yebra et al. 2008). 

For example, Manzo-Delgado et al. (2009) recorded distinct NDVI trends for grasslands, 

temperate, tropical forests and xerophytic scrubland in central Mexico and included vegetation 

type in their logistic model for predicting fire occurrence probability in their region of study. 

DR values also showed sensitivity to the dryness between regions, with a consistent gradient 

from the more arid NW to the more humid S, present for most vegetation types. The NW region 

has a marked rain season starting in June-July, whereas in the tropical S precipitations are more 

constant throughout the year. Different timing of precipitation between regions likely drive the 

different patterns in the DR decrease, with an earlier start of this decrease for C and S regions, 

compared to a later decrease measured for most vegetation types in the NW region, probably 

caused by a later start of the rain season in this region in June-July.  
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Interestingly, the relationships between DR and FDI trends varied by vegetation type and 

region. For example, for many land uses such as agriculture, pasture or temperate forests, the 

increase of DR (upper lines, figure 2) occurred earlier in the NW region compared to a later 

occurrence of this DR increase in the central (C) or S regions. Looking at the FDI patterns for 

those land uses (figure 2, lower lines), the start of the fire season, as noted by an FDI increase, 

occurred earlier in C and S regions than in the NW, suggesting that either a longer accumulated 

drought is required in the NW region for fires to start, or human patterns of ignition might differ 

between these regions. These differences suggest that the relationships between DR trends and 

fire occurrence might be specific for each type of vegetation and region, as will be discussed in 

the section below.  

 

Observed FDI trends by vegetation types and regions  

The high FDI values observed in the S or C regions for agriculture and pasture are not 

surprising, because these territories are characterized by frequent slash-and burn agricultural 

activities and clearing forest for expansion of agriculture, which result in frequent fires (e.g. 

Rodriguez-Trejo and Fulé 2003; Román-Cuesta et al. 2004; Román-Cuesta and Martinez 2006; 

Rodríguez-Trejo et al. 2008, 2011; Carrillo et al. 2012; Ibarra-Montoya et al. 2016).  

 In the NW, the highest FDI values were observed for temperate forests, agreeing with 

previous studies in the region (e.g. Avila-Flores et al. 2010a, 2010b; Pérez-Verdin et al. 2011, 

2013, 2014; Pompa-Garcia and Hernández Gonzalez 2016), who found that most of the fires in 

Durango State occurred on pine and oak temperate forest.  

Lower FDI values were observed in the temperate forests of the NE region, which, as 

discussed above, is probably caused by higher precipitation in this region and an earlier DR 

decrease caused by an earlier start of the rain season compared to the NW. However, in years of 
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extreme conditions such as 2011 under La Niña ENSO event, high fire occurrence was found in 

the forests of NE region, as noted by an FDI value of > 250 (> 5 fires /100 km2) (figure 2). This 

extreme year corresponds to unprecedented area burnt, with the largest fire in Mexico’s history -

317 000 ha -occurring in Northern Coahuila (CONAFOR, 2011).  

There is no agreement in the literature about the role of El Niño/La Niña ENSO events in the 

NE region of Mexico (e.g. Yocom and Fulé,, 2012, Yocom et al. 2010, 2014), located at the 

transition between the areas affected by drought under the influence of El Niño (South) and those 

affected by La Niña (NW) (e.g. Román-Cuesta et al. 2003; Seager et al. 2007, 2009; Yocom et 

al. 2010). Meanwhile, the DR trends observed in 2011 for the NE region temperate forests, 

peaking at a value of 80 in April 2011, as opposed to DR values of less than 70, in most of the 

other years and corresponding with low FDI values of < 50 (figure 2), seem to suggest that 

extreme drought conditions were present in the NE forests under 2011 La Niña events. The 

extreme fire occurrence observed for that region for this period of time seems to suggest that DR 

might be a potentially useful indicator for detecting extreme fuel drought and associated fire risk 

conditions in this region caused by ENSO events, although a longer time frame will be required 

for assessing its performance under future El Niño/La Niña events. 

Arboreous secondary vegetation showed high FDI values in the four regions, suggesting that 

this might be a fire-prone vegetation type. The likely cause being the high available fuel load that 

may be expected in these type of ecosystems, constituted by young trees with low crown height 

combined with high loads of surface fuels. Thus, providing a scenario of a potentially high risk of 

torching and potentially extreme fire behavior, as opposed to a lower risk of torching and lower 

severity fire regime expected in more mature forest types such as old-growth temperate forests 

(e.g. Morfin Ríos et al. 2007; Jardel et al. 2009, 2014; Cortés Montaño et al. 2012). 
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Perennial tropical forests (PTROPF) showed lower FDI values compared to deciduous 

tropical forests (DTROPF) in the NW, NE and S regions. This is expected in this evergreen 

ecosystem with high moisture conditions for most of the year, compared to drier conditions found 

in the DTROP, as noted by lower DR values in these latter ecosystems (figure 2). In the C region, 

both perennial and tropical forests showed high FDI values, in spite of lower DR values in 

PTROPF as expected in this more humid ecosystem. The high FDI values observed in this type 

of ecosystem with high moisture contents are very likely caused by adjacent agricultural burns 

escapes into forest lands. The majority of the perennial tropical forest area in this region can be 

found in the state of Chiapas, located in the vicinity of agricultural land (figure 1). In this state, 

reports of agricultural burns and escaped fires from agriculture to both temperate and perennial 

forest are frequent (e.g. Román-Cuesta et al., 2004; Román-Cuesta and Martinez 2006). Both 

deciduous and perennial tropical forests in Mexico have historically been ecosystems with a low 

frequency of fires (e.g. Rodríguez-Trejo et al. 2008, Jardel et al. 2014). However, several studies 

have noted that this historical fire regime has been recently reverted because of human activities 

that have resulted in the introduction of fire on ecosystems historically not adapted to it, with 

potentially adverse effects on post-fire regeneration of these fire-sensitive ecosystems (e.g. 

Rodríguez-Trejo 1996, 2008). 

 

Models relating monthly FDI with DR by vegetation type and region 

For all of the vegetation types and regions studied, the relationship of FDI with monthly DR 

was better described with nonlinear than with linear models, suggesting that the relationship of 

DR with fire occurrence is not linearly proportional –e.g. fire occurrence risk increases very 

rapidly with increasing DR. Different patterns of FDI and DR relationships were observed for 

different vegetation types and regions, agreeing with observations that point to a variety of fire 
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regimes resulting from combinations of climatology and fuel types in the country (e.g. 

Rodríguez-Trejo 1996, 2008; Morfin Rios et al. 2007, 2012; Jardel et al. 2009, 2014).  

The results suggested that significantly different models are required for prediction of FDI 

from DR for most vegetation types at different groups of months.  Thus, derived model 

coefficients for months and groups of months may offer information about the patterns of timing 

of fire season and their relationships with DR patterns in different vegetation types and regions.  

Models with grouped coefficients for December to February (eq. 22, 23 and 24, Table 1 and 

2) suggest an earlier start of the fire season, with March having a higher coefficient value 

compared to the three previous months. This was observed for pasture (PAS) of all regions but 

NW, shrubby secondary vegetation (SHSV) from S and C, arboreous secondary vegetation 

(ARBSV) from C and NE, and TFOR of the NE. The timing of agricultural burning in C, S and 

NE regions might be behind this, with observed fires in SSHV and ARBSV starting as early as 

March being possibly related to escaped agricultural burns in these regions.  

In the Central region, grouped coefficients from December to March were observed for 

temperate forest (TFOR) and deciduous- seasonally dry-tropical forest (DTROPF), (eq. 18, table 

1), suggesting a latter start of fire at the month of April. For perennial tropical forests (PTFOR) in 

the Centre, grouped coefficients were obtained from December to April (eq. 16, table 1), 

suggesting that in this region, at least one more month of accumulated dry conditions might be 

required for fire to start in these more humid tropical forest ecosystems.  

For the NW region, grouped coefficients from December to March were obtained for SHSV 

(eq. 21, Table 1) –one month later than S and C region-, with all the remaining vegetation types 

AG, ARBVS, TFOR, DTROPF and PTROPF, having grouped coefficients from December to 

April and separated coefficients for the month of May (eq. 16 and eq. 25), also suggesting a latter 

fire start for these vegetation types compared to other regions, particularly south and center. 
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These results seem to suggest that in the NW region, most vegetation types might be achieving 

the required conditions of accumulated drought for fire to occur one or two months later 

compared to other regions such as C or S, which might be linked to the different timing of 

precipitation between these regions, or to different patterns in the timing of human caused 

ignitions such as agricultural activities.  

Most models had good fit, the exception being tropical forests models with a more limited 

performance. This is likely caused by a lower sensitivity of FDI to DR in this more humid 

ecosystems, where fires might spread from agricultural lands that are already dry and burnt under 

non-optimum conditions as discussed above. Several studies have pointed out at agricultural 

extension and the proximity to agricultural areas as significant factors explaining fire occurrence 

in tropical forests (e.g. Rodriguez-Trejo and Fulé 2003; Román-Cuesta and Martinez 2004, 2006; 

Rodríguez-Trejo et al. 2008, 2011). Future spatial analysis should focus on the integration of 

spatially explicit consideration of the interface of forests and agriculture as potentially relevant 

variables in explaining fire occurrence in this type of ecosystems where fire is progressively 

being introduced as a consequence of human activities. Another additional limitation of this first 

approach is the 12 year dataset utilized as defined by hotspots availability. This could be 

particularly limiting in a region such as the NE, where more data under extreme DR conditions 

(e.g. El Niño/La Niña events) might be required for a deeper understanding of drought and fire 

occurrence relationships.  

 

Autoregressive integrated moving average (ARIMA) modeling of DR 

DR could be successfully modeled with acceptable accuracies for most vegetation types by 

means of ARIMA, similar to works that have utilized these techniques for forecasting fire danger 

indices in other countries (e.g. Huesca et al., 2014).  
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 It can be seen that tropical forests were among the models with a lower performance, perhaps 

due to the lower degree of variation observed in those more humid ecosystems.  

DR underestimation occurred on some extreme peak years for some vegetation types. This 

could be caused by the limitations inherent to the time length of the dataset, limited by the 12 

years of available satellite information, where only some years of extreme drought conditions are 

present. Continued monitoring of fire risk under varying fuel drought conditions might improve 

the ability of these initial models to account for extreme events. In addition, a joint consideration 

of ENSO indices might help improve forecast of extreme drought events and associated fire risk.  

Future work will focus on exploring indices that integrate satellite information with weather-

based fuel greenness indices at finer temporal resolutions (e.g. Burgan et al. 1998) together with 

exploring the potential of weather forecasts for fire risk forecasting (e.g. Roads et al. 2003, 

2005). 

 

CONCLUSIONS 

The current study represents substantial progress toward developing a system for prediction 

of fire occurrence risk based on temporal trends in fire density and fuel drought. Temporal trends 

were measured by a satellite relative greenness index, DR, in different types of vegetation and 

regions in Mexico, at a national scale, with a monthly temporal resolution, for the period 2003-

2014. DR trends varied by vegetation type and region, with drier fuel conditions measured in the 

most arid type of fuels and regions. Furthermore, significant relationships were found relating 

monthly fire density and DR for the analyzed vegetation types and regions in the period of study. 

In addition, we obtained preliminary seasonal autorregresive integrated moving average models 

for prediction of monthly DR values which might be incorporated into future fire risk forecast 

operational tools. Whereas these initial results suggest the potential of the indices utilized for 
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capturing both short-term and long-term drought phenomena and its impact on fire occurrence in 

the country, a longer time period of monitoring will be required for improving our understanding 

of long-term climatic effects, such as El Niño/La Niña impact on fuel drought and associated fire 

risk in the country.  

Future work, in the frame of the CONAFOR/CONACYT project for the development of an 

operational fire danger system in Mexico will explore temporal trends of fire occurrence with 

satellite and weather based indices of fuel greenness at finer temporal resolutions. Our future 

studies within this project will also focus on the consideration of the spatial patterns of fire 

density as related to weather, fuels and human factors (e.g. distance to roads, population, 

agriculture) for a further understanding of the spatial-temporal patterns of fire in Mexico. 
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TABLES 

 

Veg Eq. 
n Grouped months Equation 

All 
but 
AG 

7 All months grouped baDRFDI =  

 
16 12-4&6, 5 b

556&4126&412 )DRadDRad(FDI += −−  
 

17 12-3, 4-6 b
6464312312 )DRadDRad(FDI −−−− +=  

 
18 12-3, 4&6, 5 b

556&46&4312312 )DRadDRadDRad(FDI ++= −−  
 

19 12-3, 4&5, 6 b
665&45&4312312 )DRadDRadDRad(FDI ++= −−  

 
20 12-3&6, 4&5 b

5&45&46&3126&312 )DRadDRad(FDI += −−  
 

21 12-3&6, 4, 5 b
55446&3126&312 )DRadDRadDRad(FDI ++= −−  

 
22 12-2, 3, 4&6, 5 b

556&46&433212212 )DRadDRadDRadDRad(FDI +++= −−  
 

23 12-2, 3&6, 4, 5 b
55446&36&3212212 )DRadDRadDRadDRad(FDI +++= −−  

 
24 12-2&6, 3, 4&5 b

5&45&4336&2126&212 )DRadDRadDRad(FDI ++= −−  
AG 

25 9-4, 5-8 b
85854949 )DRadDRad(FDI −−−− +=  

 
26 9-3, 4-6, 7&8 b

8&78&764643939 )DRadDRadDRad(FDI ++= −−−−  
 

27 9-3&7&8,4, 5&6 b
6&56&56&544487&3987&39 )DRadDRadDRad(FDI ++= −−−−  

Table 1. Selected models for prediction of monthly Fire Density Index from Dead Ratio values. Where: Veg: Vegetation type; AG: 
Agriculture; All but AG: All vegetation types except agriculture; Eq. N: number of equation; FDI: monthly Fire Density Index, DR: monthly Dead 
Ratio, a and b are model coefficients, di: Dummy variable for identifying month or group of months “i”, with value =1 for the identified month or 
group of months “i” and value =0 for the remaining months. Numbers in coefficients and in model description correspond to months or groups of 
months, with 12: December, 1: January, 2: February, 3: March, 4: April, 5: May, 6: June, 7: July, 8: August, 9: September, 10: October, 11: 
November.



Vega-Nieva et al., Temporal patterns of fire density                                                      39 
 

 
 

Veg_region Eq a a12-2 a12-
2&6 a12-3 a12-3&6 a12-4&6 a3 a3&6 a4 a4&5 a4-6 a4&6 a5 a6 a5&6 a7&8 a5-8 a9-3 a9-4 a9-3 &7-8 b rho RMSE R2adj AIC 

TFOR_C 18    0.0194        0.022 0.02        9.2629 0.535 27.3 0.82 563 

TFOR_NE 22   0.0161         0.02         0.02 0.02               9.1414 0.394 13.3 0.69 442 

TFOR_NW 16           0.018             0.02               8.0916 1.479 26.5 0.72 556 

TFOR_S 19       0.0161           0.015       0.01             26.057 0.321 10.5 0.71 403 

PAS_C 22   0.0191         0.02         0.027 0.03               5.4058 0.398 15.6 0.96 470 

PAS_NE 22   0.0195         0.02         0.024 0.03               5.5583 0.402 8 0.89 357 

PAS_NW 7 0.01                                       20.634 1.227 3 0.64 88 

PAS_S 23   0.0528           0.102 0.18       0.2               2.2174 0.326 81.9 0.82 748 

PTROPF_C 16           0.0248             0.03               6.8375 0.097 36.2 0.77 609 

PTROPF_NE 21         0.0377       0.07       0.08               2.9451 0.164 17.8 0.68 490 

PTROPF_NW 16           0.0212             0.03               3.3332 0.301 7.6 0.74 347 

PTROPF_S 18       0.02               0.023 0.03               7.004 0.417 6.4 0.75 319 

DTROPF_C 18       0.0229               0.048 0.05               3.234 0.237 17.7 0.92 489 

DTROPF_NE 16           0.0412             0.05               3.9978 1.14 58.1 0.68 688 

DTROPF_NW 16           0.0151             0.02               7.7482 0.892 10.6 0.86 402 

DTROPF_S 7 0.03                                       5.5697 0.326 30.2 0.7 255 

ARBVS_C 23   0.0193           0.024 0.03       0.03               5.688 0.403 22.9 0.92 534 

ARBVS_NE 22   0.0218         0.03         0.028 0.03               6.0022 0.174 9.7 0.94 390 

ARBVS_NW 16           0.0208             0.02               5.8133 0.582 26.4 0.72 556 

ARBVS_S 24     0.034       0.06     0.088                    2.8021 0.287 32.8 0.82 264 

SHVS_C 22   0.0165         0.02         0.024 0.03               6.1675 0.619 14.4 0.95 456 

SHVS_NE 20         0.0176         0.022                     7.1694 0.35 13.1 0.76 196 

SHVS_NW 21         0.0123       0.02       0.02               5.8976 1.991 12.2 0.84 192 

SHVS_S 23   0.0302           0.044 0.06       0.06               3.7905 0.244 54.8 0.8 680 

AG_S 27                 0.07           0.064         0.0544 3.4732 1.616 62.2 0.79 1196 

AG_NW 25                                 0.041   0.031   3.1607 0.821 11.6 0.7 711 

AG_NE 26                     0.023         0.019   0.021     5.6447 0.856 5 0.79 471 

AG_C 27                 0.02           0.022          0.0190 6.68 0.156 8.8 0.86 635 

Table 2. Coefficients and goodness of fit of the best fit equations for the prediction of monthly Fire Density Index from Dead Ratio values for each vegetation type and region. Where: Veg_Reg: Vegetation 
and region; Eq: best fit equation from table 1; a, b and rho are global parameters; a1 to a12  are parameters associated to the corresponding months (January to December) or group of months; RMSE: Root Mean 
Square Error; R2adj: Adjusted R2; AIC: Standard AIC; AG: Agriculture; ARBSV: Arboreous Secondary Vegetation, DTROPF: Deciduous Tropical Forest, PAS: Pastureland, PTROPF: Perennial Tropical Forest, 
SHSV: Shrubby Secondary Vegetation, TFOR: Temperate Forest and NW: NWrth West, NE: NWrth East, C: Centre, S: South regions. 
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Veg_region ARIMA ar1 ar2 ar3 ar4 ar5 ar6 ma1 ma2 sar1 sar2 sar3 sar4 sma1 sma2 sma3 intercept R2 adj RMSE AIC 
AG_C (2,0,1) x(0,0,2) 1.623 -0.87         -0.674           0.3246 0.5201   71.2447 0.86 18.8 857 
AG_NE (1,0,1) x(2,0,0) 0.6421           0.3577   0.4178 0.3305           67.9347 0.74 11.6 780.8 
AG_NW (6,0,2) x(0,0,3) -0.593 0.3134 0.3828 -0.451 -0.206 0.089 1.6016 1         0.6511 0.7743 0.5639 78.5641 0.83 8.9 771 
AG_S (2,0,1) x(2,0,0) 1.4888 -0.667         -0.689   0.2634 0.4055           54.7732 0.70 29.2 912.6 
ARBSV_C (2,0,2) x(0,0,2) 1.6727 -0.932         -0.984 0.2711         0.1872 0.555   58.8577 0.84 16.2 835 
ARBSV_NE (5,0,1) x(1,0,0) 1.2508 -0.581 -0.075 0.171 -0.302   -0.214    0.1314               53.7640  0.77 7.1 710.4 
ARBSV_NW (3,0,0) x(2,0,0) 0.6589 -0.015 0.076           0.2471 0.7095           69.0646 0.89 15.1 842.5 
ARBSV_S (3,0,0) x(2,0,0) 0.7507 -0.195 0.0099            0.3245   0.4445              49.0004 0.66 22.7 879.7 
DTROPF_C (5,0,1) x(2,0,3) 0.0683 0.1381 -0.093 -0.017 0.0863   0.3664   0.0003 0.995     0.2855 -0.758 -0.08 65.1418 0.90 23.9 927 
DTROPF_NE (2,0,0) x(2,0,0) 1.0509 -0.347             0.3229 0.3404           57.3068 0.72 27.1 900.2 
DTROPF_NW (2,0,0) x(2,0,0) 0.5344 0.0891             0.2382 0.7093           66.8218 0.85 36.9 967.7 
DTROPF_S (2,0,1) x(2,0,0) 1.5354 -0.689         -0.854   0.3504 0.3615           51.024 0.70 14.9 816.1 
PAS_C (2,0,1) x(0,0,2) 1.6455 -0.891         -0.697           0.2478 0.492   66.9155 0.86 20.6 864.9 
PAS_NE (1,0,0) x(2,0,0) 0.728               0.3816 0.3828           64.2352 0.65 16.2 827.2 
PAS_NW (2,0,1) x(0,0,2) 1.5273 -0.771         -0.594           0.535 0.5502   82.9653 0.79 16.7 836.4 
PAS_S (2,0,0) x(2,0,0) 0.7707 -0.172             0.3609 0.4003           54.1157 0.67 32.8 930.7 
PTROPF_C (5,0,2) x(0,0,2) 2.216 -2.051 0.7989 -0.12 -0.054   -1.718 0.9993         0.2919 0.4685   53.2126 0.86 11.9 795.5 
PTROPF_NE (5,0,1) x(1,0,1) 1.0465 -0.316 0.0754 0.0432 -0.11   -0.662   0.9999       -0.985     46.8883 0.64 3.6 641.9 
PTROPF_NW (3,0,2) x(1,0,2) 0.1458 -0.672 0.5883       0.4425 1 0.9889       -1.135 0.5149   58.4015 0.88 26.4 936.6 
PTROPF_S (1,0,1) x(2,0,0) 0.3176           0.4732   0.3801 0.3366           49.1263 0.60 13.3 798.8 
SHSV_C (2,0,1) x(0,0,2) 1.6326 -0.875         -0.68           0.2324 0.568   66.1444 0.84 21.1 870.7 
SHSV_NE (4,0,1) x(4,0,0) 1.3012 -0.637 0.3147 -0.215     -0.201   0.2713 0.1131 0.314 0.021       67.2066 0.79 10.8 774.4 
SHSV_NW (2,0,1) x(0,0,2) 1.5459 -0.79         -0.561           0.4084 0.58   78.6086 0.81 16.5 834.8 
SHSV_S (2,0,1) x(2,0,0) 1.5005 -0.67         -0.735   0.2529 0.4262           52.1467 0.68 23.3 880.2 
TFOR_C (3,0,2) x(3,0,2) 1.5236 -1.551 0.6111       -0.957 1 -0.076 0.6902 0.372   0.0685 -0.356   58.2776 0.90 6.5 734.5 
TFOR_NE (1,0,1) x(2,0,0) 0.6455           0.501   0.357 0.3603           58.7626 0.77 9.4 749.6 
TFOR_NW (6,0,2) x(1,0,2) 0.719 0.3792 -0.301 0.0216 -0.051 0.05 0.0289 -0.411 0.9877       -0.563 -0.061   70.5062 0.90 8.4 765 
TFOR_S (1,0,0) x(1,0,0) 0.6886               0.7728             61.1325 0.74 7.9 725 
Table 3. Coefficients and goodness of fit of the best fit seasonal ARIMA models for prediction of DR. Where: Veg_Reg: Vegetation and region; ARIMA: Best fit ARIMA models of order (ar.dif,ma) 

x(sar,sdif,sma)S, where ar is the autorregresive order, dif: is the integrated order, ma is the mean average order, sar, sdif and sma are the seasonal autorregresive, integrated and mean average order, respectively and S = 

time span of repeating seasonal pattern (12 months); ari= autorregresive coefficients of the order i, mai= are moving average coefficients of the order i, sari are seasonal autorregresive coefficients, of the order i, smai are 

seasonal moving average coefficients of the order i, intercept: seasonal ARIMA model intercept; R2adj: Adjusted R2; RMSE: Root Mean Square Error; AIC: Standard AIC; AG: Agriculture; ARBSV: Arboreous 

Secondary Vegetation, DTROPF: Deciduous Tropical Forest, PAS: Pastureland, PTROPF: Perennial Tropical Forest, SHSV: Shrubby Secondary Vegetation, TFOR: Temperate Forest and NW: NWrth West, NE: 

NWrth East, C: Centre, S: South regions. 
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FIGURES. 

 

Figure 1. Map of vegetation types and regions considered in the analysis. Where: TFOR: Temperate Forest, SHV: Shrubland Vegetation, SHSV: Shrubby Secondary Vegetation, PTROPF: Perennial Tropical Forest, 
PAS: Pastureland, DTROPF: Deciduous Tropical Forest, ARBSV: Arboreous Secondary Vegetation, AG: Agriculture, NV: NW Vegetation; and NW: NWrth West, NE: NWrth East, C: Centre, S: South regions. 
Source: INEGI land use map (series V).  
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Figure 2. Observed monthly Dead Ratio (DR) (upper lines, right axis) and Fire Density Index values (lower lines, left axis) by vegetation type and region in the period 2003-2014. Where: AG: Agriculture, 
PAS: Pastureland, TFOR: Temperate Forest, ARBSV: Arboreous Secondary Vegetation and NW: NWrth West, NE: NWrth East, C: Centre, S: South regions. High resolution figures are included as annexes 
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Figure 2 (continued). Observed monthly Dead Ratio (DR) (upper lines, right axis) and Fire Density Index values (lower lines, left axis) by vegetation type and region in the period 2003-2014. Where: SHSV: 
Shrubby Secondary Vegetation, PTROPF: Perennial Tropical Forest, DTROPF: Deciduous Tropical Forest, and NW: NWrth West, NE: NWrth East, C: Centre, S: South regions. High resolution figures are included as 
annexes 
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Figure 3. Predicted and observed Fire Density Index (FDI) values for each vegetation type and region. Where: PRED: predicted FDI; OBS: observed FDI; AG: Agriculture, TFOR: Temperate Forest, PAS: 
Pastureland, PTROPF: Perennial Tropical Forest, ARBSV: Arboreous Secondary Vegetation, SHSV: Shrubby Secondary Vegetation, DTROPF: Deciduous Tropical Forest;  
and NW: NWrth West, NE: NWrth 
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Figure 4a. Example of plots of regular and partial autocorrelation functions (ACF and PACF) of the DR data of 
ARBSV_NW (upper figures) and of the residuals of the modeled DR with the best fit ARIMA model (lower figures). Lines in 
blue mark the limits for significant autocorrelation. Plots for all vegetation types are included as annexes. 

 

Figure 4b. Example of plots of observed and predicted DR for ARBSV_NW utilizing the best fit seasonal ARMA model. 
Observed data are shown in black, predicted data in red. . Plots for all vegetation types are included as annexes. 
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Figure 5. Maps of Predicted Fire Density Index (FDI) for the months of March, April, May and June of 2010 (upper figures) and 2011 (lower figures). Within each year, upper figures show predicted FDI maps 
and lower figures (FDI + hotspots) show maps of predicted FDI (from red to dark red) together with observed MODIS hotspots (in purple) for the corresponding month and year. FDI was scaled as follows: Low: FDI 
<25, Medium: 25-50; High: 50-75, Very high: 75-100, Extreme: FDI> 100. High resolution figures are included as annexes. 
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